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Extended self-similarity and hierarchical structure in turbulence
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We show that a generalization of the She-Leveque hierarchical structure@Z.S. She and E. Leveque, Phys.
Rev. Lett.72, 336~1994!# together with a constant maximum magnitude of the velocity difference give rise to
the extended self-similarity~ESS! @R. Benziet al., Phy. Rev. E48, R29~1993!#. Our analysis thus suggests that
the ESS measured in turbulent flows is an indication of the most intense structures being shocklike. Analyses
of velocity measurements in a turbulent pipe flow support our conjecture.
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Fully developed turbulence is characterized by power-
dependence of the moments of velocity fluctuations. K
mogorov in 1941 (K41) @1# predicted that the velocity struc
ture functionsSp(r ) have simple power-law dependence onr
within the inertial range

Sp~r ![^udv r up&;ep/3r p/3. ~1!

Heredv r5v(x1r )2v(x) is the velocity difference across
separationr. Experiments@2# have indicated that there i
indeed power-law scaling in the inertial range but the sca
exponents are different fromp/3. That is,

Sp~r !;r zp ~2!

andzp has a nonlinear dependence onp. This implies that the
functional form of the probability density function ofdv r
depends onr, that is, the velocity fluctuations have scal
dependent statistics. Understanding this deviation fromK41,
the anomalous scaling, is essential to our fundamental un
standing of the small scale statistical properties of tur
lence.

Recently, Benziet al. @3# have discovered a remarkab
new scaling property:Sp(r ) has a power-law dependence o
S3(r ) over a range substantially longer than the scaling ra
obtained by plottingSp(r ) as a function ofr. This behavior
was namedextended self-similarity~ESS!. Its discovery has
enabled more accurate determination of the relative sca
exponents, particularly at moderately high Reynolds nu
bers accessible experimentally and numerically. It was la
reported that such an extension is limited for anisotropic
bulent flows such as atmospheric boundary layer and cha
flow @4–6#. This inspires the study of a generalized ES
~GESS!, a scaling behavior of the normalized structure fun
tions when plotted against each other@7,8#, which is still
valid in these anisotropic flows. The validity of ESS sugge
that the different order structure functions have the sa
dependence onr, whenr is near the dissipative range@9–11#.
Very recently, Yakhot argued that some mean-field appro
mation of the pressure contributions in the Navier-Sto
equation would lead to ESS@12#.

To account for the anomalous scaling exponentszp , She
and Leveque@13# have proposed a model of hierarchic
1063-651X/2002/65~6!/066303~4!/$20.00 65 0663
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structure~HS!. When stated for the velocity structure fun
tions, the HS hypothesis reads

Sp12~r !

Sp11~r !
5Ap11FSp11~r !

Sp~r ! Gb

@S(`)~r !#12b. ~3!

HereS(`)(r )[ lim
p→`

Sp11(r )/Sp(r ) and 0,b,1 is a con-

stant. This hypothesis~and the similar version for the loca
energy dissipation! was supported by experimental veloci
measurements taken in turbulent jets and wakes@14–16#.
Moreover, the passive scalar structure functions@17# and the
local passive scalar dissipation@18#, the temperature struc
ture functions@19# and the local temperature dissipation@20#
in turbulent convection, and the velocity structure functio
in a class of shell models@21–23# were all found to posses
similar hierarchical structures.

The HS description advocates the importance of the qu
tity S(`)(r ). If the probability density function ofdv r is fi-
nite and is zero beyond a certain value, one can show
S(`)(r ) is equivalent to lim

p→`
Sp

1/p , and is equal toudv r umax,

the maximum magnitude of the velocity difference. Thus,
any flows in which the velocity is bounded,S(`)(r ) would
exist, and is associated with the most intense structures o
flow.

In this paper, we show that the She-Leveque hierarch
structure~SLHS! leads to GESS. In other words, SLHS is
special form of GESS. We then give a generalization
SLHS, which is equivalent to GESS, with the constantb
replaced by a function ofp. Furthermore, we show that i
udv r umax is independent ofr for r within the GESS range, the
generalized SLHS~and hence GESS! will give rise to ESS.
This leads to our conjecture that the observed ESS in tu
lent flows is an indication of the most intense structures
ing shocklike with a constantudv r umax. We note that in the
Burgers equation, the presence of shocks will give audv r umax

that is independent ofr. Thus, we use the term shocklike
which is meant to be indicative only. Consequently, we p
dict that in anisotropic flows where GESS but not ESS hol
udv r umax has ar dependence. Finally, we note that in an
finite number of measurements, the detectableudv r umax

would depend on the sample size. It is thus important to h
©2002 The American Physical Society03-1
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a procedure that allows one to study the trueudv r umax or
S(`)(r ). We develop such a procedure, a systematic
analysis, for analyzing experimental turbulent signals. Ap
cation of the HS analysis to turbulent velocity fluctuations
a pipe flow demonstrates thatudv r umax indeed depends onr
in the near-wall strong-shear regions where only GESS
not ESS is valid, and is consistent with beingr independent
in the centerline of the pipe where ESS is valid.

Rewrite Eq.~3! as

Sk11~r !

Sk~r !S(`)~r !
5AkF Sk~r !

Sk21~r !S(`)~r !
Gb

, ~4!

for integerk, which implies

Sn~r !5BnF S1~r !

S(`)~r !
G (12bn)/(12b)

@S(`)~r !#n, ~5!

whereBn[Pk51
n P j 50

k21Aj
bk212 j

. Equation~5! then gives rise
to

Tn~r !;Tm~r !r(n,m), ~6!

which is a scaling behavior for the normalized structu
functions,Tn(r )[Sn(r )/S3(r )n/3, with the normalized expo-
nentsr(n,m), even whenSn(r ) does not have a scaling be
havior in r. For SLHS,

r~n,m!5
3~12bn!2n~12b3!

3~12bm!2m~12b3!
. ~7!

We have thus proved that SLHS implies GESS.
In Ref. @8#, Benzi et al. interpreted GESS in terms of

random multiplicative process, and, thus, also touched u
the possible relation between GESS and SLHS. They sho
that GESS holds if

Sp~r !;g1~r !pg2~r !H(p) ~8!

for any functionsg1(r ), g2(r ), andH(p). If Eq. ~6! is valid,
we can always write the structure functions in the form
Eq. ~8!, say, withg1(r )5S3(r )1/3, g2(r )5Sq* (r )/S3(r )q* /3,
andH(p)5r(p,q* ) for any chosen value ofq* . Thus, Eq.
~8! is actually equivalent to GESS.

Our demonstration here gives the functionsg1(r ) and
g2(r ) a meaning. Although the choice ofg1(r ) andg2(r ) is
not unique, the following forms can be obtained from E
~5!: g1(r )5S(`)(r ) and g2(r )5S3(r )/@S(`)(r )#3. Here,
g1(r ) describes ther dependence of the strongest fluctu
tions S(`)(r ) and g2(r ) describes the normalizedr depen-
dence of ~typical! weak fluctuations @e.g., S3(r )# by
@S(`)(r )#3. Expressingg1 andg2 this way, we have

Sp~r !;@S(`)~r !#pH S3~r !

@S(`)~r !#3J f (p)

, ~9!

where f (p) is a function to be discussed below. Note th
when g2(r ) is constant, or the weak fluctuations have t
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samer dependence as the strongest fluctuations, we have
K41 simple scaling. The functionf (p) has to satisfy various
conditions. By definition, f (0)50, f (3)51, and
lim

p→`
f (p11)2 f (p)5 lim

p→`
f (p)/p50. Furthermore,

the boundedness of the velocity restrictszp to be a nonde-
creasing function ofp @2#. This is guaranteed ifd f(p)/dp
>0.

Note that Eq.~9! is a general expression of GESS. R
writing Eq. ~9! in the form of Eq.~4!, we have

Sp11~r !

Sp~r !S(`)~r !
5CpF Sp~r !

Sp21~r !S(`)~r !
G g(p)

, ~10!

whereg(p)[@ f (p11)2 f (p)#/@ f (p)2 f (p21)#. It is clear
that SLHS corresponds to the particular case ofg(p)5b or
equivalently

f ~p!5
12bp

12b3
. ~11!

We list two additional possible classes off (p): f (p)
5@(ps11)a21#/@(3s11)a21# and f (p)5 ln(ps
11)/ln(3s11) with s.0 and 0,a,1. The latter is the
limit of the former whena→0. These two cases correspon
to the two results derived by Novikov, Eqs.~18! and~19! in
Ref. @24#, using the theory of infinitely divisible distribu
tions.

To study when ESS would also be valid, we rewrite E
~6! in the following form:

Sp~r !1/p

S3~r !1/3
;FSq~r !1/q

S3~r !1/3G (q/p)r(p,q)

~12!

with

r~p,q!5
f ~p!2p/3

f ~q!2q/3
. ~13!

Thus, we see that if there exists ap* Þ0 such thatSp* (r )1/p*

is independent ofr, then we would have a scaling behavi
of Sp vs S3 ~and thusSq for qÞp). If p* is finite, zp* 50,
which implieszm50 for 0<m<p* becausezn has to be a
nondecreasing function ofn. It further giveszp50 for all
values ofp if zp is an analytic function ofp. This could be
avoided only ifp* →`. Hence, GESS together with the co
dition that S(`)(r ) is independent ofr would give rise to
ESS,

Sp~r !;S3~r !h(p,3), ~14!

with h(p,3)5 f (p), even whenSp(r ) does not have a power
law dependence onr.

Using Eq.~9!, an independence ofS(`) on r implies

zp5z3f ~p!. ~15!

For SLHS, lim
p→`

f (p)51/(12b3) hence Eq.~15! further

implies a saturation ofzp as p→`. A connection of the
3-2
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saturation of the exponents with the existence of shocks
suggested earlier by Chen and Cao@25#.

Both ESS and SLHS have been observed in a variety
turbulent flow fields. The above analysis points to the int
esting conjecture that the two combined is an indication o
property of the flow field thatudv r umax is independent ofr,
and the corresponding physical picture is that the most
tense structures are shocklike. One way to check the pla
bility of these ideas is to examine experimental velocity m
surements that demonstrate GESS, and to investi
whether udv r umax is indeed independent ofr when ESS is
valid and otherwise dependent onr when ESS is not valid.

As the detectableudv r umax in any finite number of mea
surements would almost surely underestimate its true va
we have instead developed a systematic procedure to g
indirect estimate of ther dependence ofS(`)(r ). This proce-
dure is derived from the HS model, and we call it a H
analysis. It works when GESS is of the special form
SLHS.

One first verifies if SLHS is valid by performing ab test.
It consists of computingTp(r ) and obtainingr(p,q) by
measuring the slopes of ln(Tp) vs ln(Tq). Let Dr(p,q)
5r(p11,q)2r(p,q). It is easy to derive the following
equation when SLHS is valid:

Dr~p11,q!5bDr~p,q!1
~12b!~12b3!

q~12b3!23~12bq!
. ~16!

If one finds parallel straight lines when plottingDr(p
11,q) vs Dr(p,q) for a set of values ofq, we say that the
data pass theb test and the turbulent flow field possesses
SLHS property. The slope and intercept provide a dou
estimate of the constantb. With the estimatedb, one can
then constructf (p) using Eq.~11!.

For an indirect estimate ofS(`)(r ), we compute

Fp~r ,r 0![
ln@Sp~r !/Sp~r 0!#2 f ~p!ln@S3~r !/S3~r 0!#

p23 f ~p!
~17!

for a fixed value ofr 0 within the GESS range, and plot it a
a function ofr for a set of values ofp. From Eq.~9!, one sees
that Fp(r ,r 0) should be independent ofp and equal to
ln@S(`)(r)/S(`)(r0)#. In particular, if S(`) is independent ofr,
thenFp(r ,r 0)50 for r within the GESS range.

We have applied the above procedure to analyze hot-w
measurements of longitudinal velocity fluctuations in a p
flow of air @26#. The pipe is 22.5 m long with an inner d
ameterD of 10.5 cm, and the Reynolds numberUD/n is
about 1.353105 using the mean velocity along the centerli
U'19.3 m/s and the kinematic viscosity of airn51.5
31025 m2/s. The velocity measurements were taken a
function of time at 18.2 m away from the entrance both at
centerline of the pipe and at a distance of 0.1 mm from
pipe wall. The estimated wall unit isy1;0.01 mm, so the
near-wall measurements were taken at about ten wall u
where we expect to see a turbulence with strong shear.
have computed the velocity structure functions using
standard Taylor’s frozen flow hypothesis. Thus the separa
06630
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r is measured in units of the sampling time 1/48 ms us
r 5Ut, wheret is the time separation. Allr ’s quoted below
will be in the same units. The maximum order computed
p510, which is possible because of the large number
measurements taken at each point55.763107. We have
checked that GESS is valid for both sets of measurem
but ESS is only valid at the centerline. The range of GE
~and also ESS when valid! is r'102500.

We have obtainedr(p,q) for the two locations and
h(p,3) for the centerline location. In Fig. 1, we plotDr(p
11,q) vs Dr(p,q) for some values ofq for both locations.
The data can be fitted by parallel straight lines showing t
the HS is indeed of the She-Leveque form at both locatio
We estimate the value ofb simultaneously from the slope
and the intercept and get 0.9360.01 and 0.8560.01, respec-
tively, for the centerline and the near-wall location. In t
inset, we see good agreement ofh(p,3) with f (p) for the
centerline measurements. This agreement is an indicatio
the r independence ofS(`), which is in accord with the va-
lidity of ESS in these measurements.

We have next computedFp(r ,r 0) with r 0569 for both
locations and found that the data indeed collapse whenp is
large. In Fig. 2, we plotFp(r ,r 0) as a function ofr. We see
thatFp(r ,r 0) for the centerline measurements is almost z
for r>30 while that for the near-wall measurements show

FIG. 1. Dr(p11,q) vs Dr(p,q) for q51 ~squares!, q52
~circles!, q54 ~triangles!, and q55 ~diamonds!. Above the solid
line (slope50.93) are the centerline data and below the dashed
(slope50.85) are the near-wall data~shifted for clarity!. In the
inset, we see a good agreement ofh(p,3) ~circles! with f (p) ~solid
line! for the centerline data.

FIG. 2. Fp(r ,r 0) for p>4 for both the centerline and near-wa
measurements~solid lines with filled dots!. In the inset, we show
the local slope of lnS8(r) vs lnS3(r) as a function of lnS3(r), illus-
trating that ESS is valid for the centerline~solid line! but not the
near-wall~dashed line! measurements.
3-3
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clear r dependence throughout. Since ESS is valid for
centerline but not for the near-wall measurements~see the
inset!, these results support our conjecture that the validity
ESS in turbulent flows is an indication ofudv r umax being r
independent.

In summary, we have proposed a link between a mea
able statistical property of turbulence, the ESS, and a p
erty of the most intense structures, ther independence o
udv r umax or S(`)(r ). We have developed a systematic proc
dure to test this conjecture when SLHS holds. The analy
of experimental pipe flow data support our conjecture:
near-wall strong-shear turbulence contains more comp
most intense structures and that ESS is not valid while
centerline fully developed turbulence has shocklike most
li

ro

-

-

ic
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tense structures in thatS(`)(r ) is independent ofr and ESS is
valid. A consequence of ther independence ofS(`)(r ) when
SLHS holds is the saturation of the scaling exponents of
velocity structure functions at very high orders. Further e
perimental and numerical tests are highly desirable.

Z.Z. thanks M.D. Zhou and Y. Zhu for their help in con
ducting the velocity measurements. The work at the Chin
University of Hong Kong was partially supported by the R
search Grants Council of the Hong Kong SAR, China~Grant
Nos. CUHK 4119/98P and CUHK 4286/00P! while that at
Peking University was partially supported by grants fro
NNSF of China~Grant Nos. 19825503 and 10032020! and
from the Ministry of Education of China.
ett.

ys.

ys.

for
@1# A.N. Kolmogorov, C. R. Acad. Sci. URSS30, 301 ~1941!.
@2# U. Frisch,Turbulence: The Legacy of A. N. Kolmogorov~Cam-

bridge University Press, Cambridge, England, 1995!.
@3# R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaio

and S. Succi, Phys. Rev. E48, R29 ~1993!; R. Benzi, S. Cil-
iberto, C. Baudet, G.R. Chavarria, and R. Tripiccione, Eu
phys. Lett.24, 275 ~1993!.

@4# G. Stolovitzky and K.R. Sreenivasan, Phys. Rev. E48, R33
~1993!.

@5# R. Benzi, M.V. Struglia, and R. Tripiccione, Phys. Rev. E53,
R5565~1996!.

@6# G. Amati, R. Benzi, and S. Succi, Phys. Rev. E55, 6985
~1997!.

@7# R. Benzi, L. Biferale, S. Ciliberto, M.V. Struglia, and R. Trip
iccione, Europhys. Lett.32, 709 ~1995!.

@8# R. Benzi, L. Biferale, S. Ciliberto, M.V. Struglia, and R. Trip
iccione, Physica D96, 162 ~1996!.

@9# R. Benzi, S. Ciliberto, C. Baudet, and G.R. Chavarria, Phys
D 80, 385 ~1995!.

@10# D. Segel, V. L’vov, and I. Procaccia, Phys. Rev. Lett.76, 1828
~1996!.

@11# H. Fujisaka and S. Grossmann, Phys. Rev. E63, 026305
~2001!.

@12# V. Yakhot, Phys. Rev. Lett.87, 234501~2001!.
,

-

a

@13# Z.-S. She and E. Leveque, Phys. Rev. Lett.72, 336 ~1994!;
Z.-S. She,Lecture Notes in Physics, edited by Edenet al.
~Springer-Verlag, New York, 1997!, Vol. 491, p. 28; Z.-S. She,
Prog. Theor. Phys. Suppl.130, 87 ~1998!.

@14# G.R. Chavarria, C. Baudet, and S. Ciliberto, Phys. Rev. L
74, 1986~1995!.

@15# G.R. Chavarria, C. Baudet, R. Benzi, and S. Ciliberto, J. Ph
II 5, 485 ~1995!.

@16# R. Camussi and R. Benzi, Phys. Fluids9, 257 ~1997!.
@17# G.R. Chavarria, C. Baudet, and S. Ciliberto, Physica D99, 369

~1996!.
@18# E. Leveque, G.R. Chavarria, C. Baudet, and S. Ciliberto, Ph

Fluids 11, 1869~1999!.
@19# E.S.C. Ching, Phys. Rev. E61, R33 ~2000!.
@20# E.S.C. Ching and C.Y. Kwok, Phys. Rev. E62, R7587~2000!.
@21# P. Frick, B. Dubrulle, and A. Babiano, Phys. Rev. E51, 5582

~1995!.
@22# R. Benzi, L. Biferale, and E. Trovatore, Phys. Rev. Lett.77,

3114 ~1996!.
@23# E. Leveque and Z.-S. She, Phys. Rev. E55, 2789~1997!.
@24# E.A. Novikov, Phys. Rev. E50, R3303~1994!.
@25# S. Chen and N. Cao, Phys. Rev. E52, R5757~1995!.
@26# The experiment was conducted at the State Key Laboratory

Turbulence Research at Peking University.
3-4


