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Extended self-similarity and hierarchical structure in turbulence
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We show that a generalization of the She-Leveque hierarchical stry@i8e She and E. Leveque, Phys.
Rev. Lett.72, 336(1994)] together with a constant maximum magnitude of the velocity difference give rise to
the extended self-similarifESS [R. Benziet al, Phy. Rev. 48, R29(1993]. Our analysis thus suggests that
the ESS measured in turbulent flows is an indication of the most intense structures being shocklike. Analyses
of velocity measurements in a turbulent pipe flow support our conjecture.
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Fully developed turbulence is characterized by power-lawstructure(HS). When stated for the velocity structure func-
dependence of the moments of velocity fluctuations. Kol+ions, the HS hypothesis reads
mogorov in 1941 K41) [1] predicted that the velocity struc-

ture functionsS(r) have simple power-law dependenceron Sp+alr) Sp+1(r) B (=) o1l
within the inertial range S, P TSN [ST(r)] " ©)
= p\ . -P/3,p/3
Sp(r)=(|6v,|P)~€"rP=, @) HereS(“)(r)EIimpﬂwspﬂ(r)lsp(r) and 0<3<1 is a con-

Here 5v.,=v(x+r)—.v(x) is the velo_city_ difference across a stant. This hypothesiénd the similar version for the local
separationr. Experiments[2] have indicated that there is energy dissipationwas supported by experimental velocity
indeed power-law scaling in the inertial range but the scalingneasurements taken in turbulent jets and wales-16.

exponents are different frop/3. That is, Moreover, the passive scalar structure functighid and the
¢ local passive scalar dissipatig@8], the temperature struc-
Sp(r)~ree @ ture functiond 19] and the local temperature dissipati@0]

in turbulent convection, and the velocity structure functions
in a class of shell model®21-23 were all found to possess
similar hierarchical structures.

and{, has a nonlinear dependence his implies that the
functional form of the probability density function afv,
gepends or, thaF is, the velocny quct.uauor?s 'have scale- The HS description advocates the importance of the quan-
ependent statistics. Understanding this deviation fkofd, ity S*) . . . o
S : y S/(r). If the probability density function obv, is fi

the anomalous scaling, is essential to our fundamental underr]-ite and is zero beyond a certain value, one can show that
standing of the small scale statistical properties of turbu—s(w) . . . 1/p o max
lence. (r) is equivalent to “”FLxSp , and is equal tosv, |

Recently, Benziet al. [3] have discovered a remarkable the maximum magnitude of the velocity difference. Thus, in
new scaling propertyS,(r) has a power-law dependence on any flows in which the velocity is bounde&™)(r) would
S;(r) over a range substantially longer than the scaling rangexist, and is associated with the most intense structures of the
obtained by plottingS,(r) as a function of. This behavior  flow.
was namedextended self-similarityESS. Its discovery has In this paper, we show that the She-Leveque hierarchical
enabled more accurate determination of the relative scalingtructure(SLHS) leads to GESS. In other words, SLHS is a
exponents, particularly at moderately high Reynolds numspecial form of GESS. We then give a generalization of
bers accessible experimentally and numerically. It was lateBLHS, which is equivalent to GESS, with the constght
reported that such an extension is limited for anisotropic turreplaced by a function op. Furthermore, we show that if
bulent flows such as atmospheric boundary layer and channbv | ™®is independent of for r within the GESS range, the
flow [4—6]. This inspires the study of a generalized ESSgeneralized SLHSand hence GESSwill give rise to ESS.
(GESS, a scaling behavior of the normalized structure func-This leads to our conjecture that the observed ESS in turbu-
tions when plotted against each otH&:8], which is still  lent flows is an indication of the most intense structures be-
valid in these anisotropic flows. The validity of ESS suggestsng shocklike with a constarjv,|™ We note that in the
that the different order structure functions have the sam@urgers equation, the presence of shocks will givéwa|™®
dependence on whenr is near the dissipative rang@—11].  that is independent of. Thus, we use the term shocklike,
Very recently, Yakhot argued that some mean-field approxiwhich is meant to be indicative only. Consequently, we pre-
mation of the pressure contributions in the Navier-Stokedglict that in anisotropic flows where GESS but not ESS holds,
equation would lead to ESR2]. |6v,|™ has ar dependence. Finally, we note that in any

To account for the anomalous scaling exponeitsShe  finite number of measurements, the detectapfe ™™
and Leveque[13] have proposed a model of hierarchical would depend on the sample size. It is thus important to have
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a procedure that allows one to study the tfde,|™ or ~ samer dependence as the strongest fluctuations, we have the
S™)(r). We develop such a procedure, a systematic H41 simple scaling. The functiof(p) has to satisfy various
analysis, for analyzing experimental turbulent signals. Appli-conditions. By definition, f(0)=0, f(3)=1, and
cation of the HS analysis to turbulent velocity fluctuations inlim __f(p+1)—f(p)=lim___f(p)/p=0.  Furthermore,

a pipe flow demonstrates thatv,|"*indeed depends on  the houndedness of the velocity restri¢fsto be a nonde-

in the near-wall strong-shear regions where only GESS bureasing function o [2]. This is guaranteed ifif(p)/dp
not ESS is valid, and is consistent with beingndependent  —

in the centerline of the pipe where ESS is valid. Note that Eq.(9) is a general expression of GESS. Re-
Rewrite Eq.(3) as writing Eq. (9) in the form of Eq.(4), we have
B
Sk+4(r) S(r) a(p)
A — @ Sl 1 S0 g
Si(r)S(r) Sk-1(r)S™(r) Sp(r)S(*)(r) P Sp,l(r)S(””)(r)
for integerk, which implies whereg(p)=[f(p+1)—f(p)V/[f(p)—f(p—1)]. It is clear
oty that SLHS corresponds to the particular casg@f) = or
Sy(r) |4 FYEH =)/ 20 equivalently
Sh(N=Bnl <7+ [S(r)]", 5
S(r) .

1l f(p)= . 11
whereBnEHLlH}‘;éAf’k "' Equation(s) then gives rise ) 1-8° (0
to

We list two additional possible classes d&{p): f(p)
To(1)~T(r)P™M, 6  =[(po+1)*-1]/[(3c+1)*~1] and  f(p)=In(po

o _ +1)/In(30+1) with >0 and O0<a<1. The latter is the
which is a scaling behavior for the normalized structurefimit of the former whena— 0. These two cases correspond
functions, T,(r)=S,(r)/Ss(r)™?, with the normalized €xpo-  to the two results derived by Novikov, E¢4.8) and(19) in
nentsp(n,m), even wherS,(r) does not have a scaling be- Ref. [24], using the theory of infinitely divisible distribu-

havior inr. For SLHS, tions.
N 3 To study when ESS would also be valid, we rewrite Eq.
_3(1-8%—n(1-8) (6) in the following form:
p(n’m)_B(l—ﬁm)—m(l—,B3)' (7)
S (r)llp S (r)l/q (a/p)p(p.q)
We have thus proved that SLHS implies GESS. eTiadbe 1,3] (12
In Ref. [8], Benzi et al. interpreted GESS in terms of a Ss(r) Ss(r)
random multiplicative process, and, thus, also touched upo ith
the possible relation between GESS and SLHS. They showe
that GESS holds if f(p)—p/3
p(p’q):f(——IS' (13
Sp(r) =i (r)Pgy(r)"P ®) a)-d

for any functionsg;(r), g,(r), andH(p). If Eq. (6) is valid, Th_us, we see that if there existpa+ 0 such thasp*(r)llp* |

we can always write the structure functions in the form of'Sf mdepend(entdofr,] thenfwe WOU;d r;av*e a scaling behavior
; _ _ * S, vs S3 (and thusS, for g#p). If p* is finite, {,x =0,

Eq. (8), say, withg, (r)=Ss(r)"%, ga(r)=Sgx (1)/Sy(r)* %, O = VS : P

and H(p)=p(p,q*l) for any chosea value aj*. Thus, Eq. which implies{,,=0 for O=m=<p* because€/, has to be a

(8) is actually equivalent to GESS. nondecreasing function af. It further gives{,=0 for all

Our demonstration here gives the functioggr) and valu_es ofp if _gp*is an analytic function op. This -could be
g,(r) a meaning. Although the choice gf(r) andg,(r) is aYF"ded onI;gmn)‘p — <. Hence, GESS together \.N'th Fhe con-
not unique, the following forms can be obtained from Eg.dition that S™(r) is independent of would give rise to
5): gy(1)=S")(r) and g,(r)=Sy(r)/[S)(r)]3. Here, ESS
g,(r) describes the dependence of the strongest fluctua- . 7(p.3)
tions S()(r) and g,(r) describes the normalized depen- Spl1)=Ss(r) ™, (149

dence of (typical) weak fluctuations[e.g., S3(r)] by  with n(p,3)=1f(p), even wherS,(r) does not have a power-

[S™)(r)]%. Expressingy; andg, this way, we have law dependence on
sy | Using Eq.(9), an independence &) onr implies
~Tg=) p] ™27
SH(1)~[S(N)] {[Sm(r)]s] © £p=0af(p). (15

H — _ n3
where f(p) is a function to be discussed below. Note that70" SLHS, lim,__f(p)=1/(1- ") hence Eq(19) further
when g,(r) is constant, or the weak fluctuations have theimplies a saturation of, as p—. A connection of the
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saturation of the exponents with the existence of shocks was
suggested earlier by Chen and Ga&s].

Both ESS and SLHS have been observed in a variety of »
turbulent flow fields. The above analysis points to the inter- —_ -

o N O
USRS
n(p.3)
(=3 - n w
1

esting conjecture that the two combined is an indication of a A - °

property of the flow field thatév,|™ is independent of, 3 4 -

and the corresponding physical picture is that the most in- 3 -6 -

tense structures are shocklike. One way to check the plausi- -8

bility of these ideas is to examine experimental velocity mea- -10 o —

-10 -8 -6 -4 -2 0 2 4

surements that demonstrate GESS, and to investigate Ap(p:)

whether|dv,|™ is indeed independent af when ESS is
valid and otherwise dependent onvhen ESS is not valid. FIG. 1. Ap(p+14) vs Ap(p.q) for g=1 (squares q=2
As the detectablgsv,|™ in any finite number of mea- (circles, q=4 (triangles, andq=5 (diamonds. Above the solid
surements would almost surely underestimate its true valudine (slope=0.93) are the centerline data and below the dashed line
we have instead developed a systematic procedure to get &slope=0.85) are the near-wall datghifted for clarity. In the
indirect estimate of the dependence o®*)(r). This proce- inset, we see a good agreementzgp,3) (circles with f(p) (solid
dure is derived from the HS model, and we call it a HSline) for the centerline data.
analysis. It works when GESS is of the special form of
SLHS. r is measured in units of the sampling time 1/48 ms using
One first verifies if SLHS is valid by performingatest. ~r=U7, wherer is the time separation. Ali's quoted below
It consists of computingT,(r) and obtainingp(p,q) by will be in the same units. The maximum order computed is

measuring the slopes of IR vs In(Ty). Let Ap(p,q) P=10, which is possible because of the large number of
=p(p+19)—p(p,q). It is easy to derive the following Measurements taken at each psibt76x 10°. We have

equation when SLHS is valid: checked that GESS is valid for both sets of measurements
but ESS is only valid at the centerline. The range of GESS
(1-B)(1-p3 (and also ESS when valids r ~ 10— 500.
Ap(p+19)=pBAp(p,q)+ q(1= B —3(1-f0 (16) We have obtainedp(p,q) for the two locations and

7n(p,3) for the centerline location. In Fig. 1, we platp(p
If one finds parallel straight lines when plottingp(p ~ +1.) vs Ap(p,q) for some values ofj for both locations.
+1,) vs Ap(p,q) for a set of values of], we say that the The data can be fitted by parallel straight lines showing that
data pass thg test and the turbulent flow field possesses the¢he HS is indeed of the She-Leveque form at both locations.
SLHS property. The slope and intercept provide a doubléVe estimate the value g8 simultaneously from the slope
estimate of the constarg. With the estimateg3, one can and the intercept and get 0-88.01 and 0.8%0.01, respec-

then construct(p) using Eq.(12). tively, for the centerline and the near-wall location. In the
For an indirect estimate &*)(r), we compute inset, we see good agreement xfp,3) with f(p) for the
centerline measurements. This agreement is an indication of
IN[S,(r)/Sy(ro)]1— f(P)IN[Sa(r)/Ss(r )] ther independence o8, which is in accord with the va-
Fo(r,ro)= 0=31(p) lidity of ESS in these measurements.
(17) We have next computeB ,(r,ro) with ro=69 for both

locations and found that the data indeed collapse when
for a fixed value of o within the GESS range, and plot it as large. In Fig. 2, we ploF ,(r,ro) as a function of. We see
a function ofr for a set of values gb. From Eq.(9), one sees thatF(r,ro) for the centerline measurements is almost zero
that F(r,ro) should be independent gf and equal to for r=30 while that for the near-wall measurements shows a
IN[S™)(r)/S)ro)]. In particular, if S is independent of,
thenF,(r,ro) =0 for r within the GESS range.

We have applied the above procedure to analyze hot-wire
measurements of longitudinal velocity fluctuations in a pipe
flow of air [26]. The pipe is 22.5 m long with an inner di-
ameterD of 10.5 cm, and the Reynolds numbeD/v is
about 1.3% 10° using the mean velocity along the centerline

Folrro)
|
o
T
d(InS,d(InS,) ¢ \J
o '
L

U~19.3 m/s and the kinematic viscosity of air=1.5 6420 2 4

x10"° m?s. The velocity measurements were taken as a 03 L e

function of time at 18.2 m away from the entrance both at the o 2 4 6 8 10

centerline of the pipe and at a distance of 0.1 mm from the Inr

pipe wall. The estimated wall unit ig"~0.01 mm, so the FIG. 2. Fy(r o) for p=4 for both the centerline and near-wall

near-wall measurements were taken at about ten wall unitgneasurementésolid lines with filled dots In the inset, we show
where we expect to see a turbulence with strong shear. Wge local slope of Ir(r) vs InS,(r) as a function of Ir(r), illus-
have computed the velocity structure functions using tharating that ESS is valid for the centerlirisolid line) but not the
standard Taylor’s frozen flow hypothesis. Thus the separationear-wall(dashed ling measurements.
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clearr dependence throughout. Since ESS is valid for th&ense structures in th&™)(r) is independent of and ESS is
centerline but not for the near-wall measuremeisee the | 5iq. A consequence of theindependence d&*)(r) when
insey, these results support our conjecture that the validity 0lg| g holds is the saturation of the scaling exponents of the
ESS in turbulent flows is an indication v " beingr  \ejocity structure functions at very high orders. Further ex-

independent. _ perimental and numerical tests are highly desirable.
In summary, we have proposed a link between a measur-

able statistical property of turbulence, the ESS, and a prop- Z.Z. thanks M.D. Zhou and Y. Zhu for their help in con-
erty of the most intense structures, théndependence of ducting the velocity measurements. The work at the Chinese
|6v,|™* or S™)(r). We have developed a systematic proce-University of Hong Kong was partially supported by the Re-
dure to test this conjecture when SLHS holds. The analysesearch Grants Council of the Hong Kong SAR, ChiGaant

of experimental pipe flow data support our conjecture: theNos. CUHK 4119/98P and CUHK 4286/0pR/hile that at
near-wall strong-shear turbulence contains more compleReking University was partially supported by grants from
most intense structures and that ESS is not valid while th&INSF of China(Grant Nos. 19825503 and 1003202thd
centerline fully developed turbulence has shocklike most infrom the Ministry of Education of China.
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